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Abstract. The importance of particle spacing in the transportation of slurries, its effect on viscosity and turbulent mixing, prompt a new look at distribution patterns. Flows constrained by a circular pipe are often assumed to have constant density across a section. However, when considering the constraining influence of duct walls, particle distribution patterns for constant density can give widely different estimates of particle spacing at the centre and the periphery of the bore. Equal linear spacing is only mathematically possible in a circular cross-section for special cases of 3 and 7 particles but sections through real slurries contain thousands. An alternative model, in which radial and circumferential spacing are made equal and constant over the section, is more realistic but can create a radial density gradation for the mixture. The final model considered is the Constant Mixture Density model. This model creates a pattern of particles in which linear spacing in the central region is greater than that at the periphery. The distribution of particles obtained gives a good basis for randomized investigations of particle-liquid mixtures.
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NOMENCLATURE

	As
	Area of particle slice intersecting the plane of the pipe cross-section
	m2

	C
	Concentration of particles by volume
	-

	CA
	Concentration of particles by area in a pipe cross-section
	-

	D
	Pipe diameter
	m

	d
	Particle diameter
	m

	ds
	Diameter of particle slice intersecting the plane of the pipe cross-section
	m

	E(As)
	Expectation of intersecting area for a population of particles
	m2

	i
	Ring number
	-

	L
	Length of pipe
	m

	m
	Number of rings
	-

	N
	Number of particles in the cross-section
	-

	ni
	Number of particles in ring i
	-

	R
	Pipe bore radius
	m

	r0
	Radius of innermost ring, Constant Radial and Circumferential Spacing model
	m

	ri , ri-1
	Radius of rings i and (i-1)
	m

	round(-)
	Function to round to the nearest integer (e.g. round(2π)=6)
	-

	Vp
	Cumulated volume of particles in a length of pipe
	m3

	x
	Distance across a particle to the plane intersecting the pipe cross-section 
	m

	y
	Vertical distance from the centre of the pipe section
	m

	
	Mean area per particle
	m2

	Ai, 
	Area of annulus [ri-1 , ri-1+ri]
	m2

	δr
	Radial ring spacing, Constant Radial and Circumferential Spacing model
	m

	δri
	Radial ring spacing (for ring i), Constant Mixture Density model
	m

	
	Areal particle density by number of particles
	m2


1. INTRODUCTION

Computer modelling of the flow of particle liquids often requires a starting distribution of particles before downstream developments can be plotted. Downstream settling patterns for example depend upon the position of particles at the starting section. These positions can be distributed regularly or randomly using a uniform distribution of linear spacing, but this can challenge the assumption of constant density across the section as explained below and analysed in detail in Jones (2013).

2. EQUAL LINEAR SPACING

Clearly equal linear spacing applies to particle numbers greater than two (although a particle at the centre and the periphery might be considered a special case for spacing investigations). A pattern of three particles in the form of an equilateral triangle circumscribed by the pipe bore is technically valid but an impractically poor distribution and low number of particles. In fact the only other precise solution to be found is the circumscribed hexagon with a particle at the centre. Figure 1 illustrates equal linear spacing for a circular section. Note that, at most, only 7 particles can be accommodated if equal linear spacing is the guiding principle, a volumetric concentration of approximately 0.05% for 1mm spherical particles in a 100mm circular pipe (See Appendix). An alternative model for particle separation was required.


[image: image1]
Fig.1: Equal Linear Spacing

3. CONSTANT RADIAL AND CIRCUMFERENTIAL SPACING

Considering the flow through a cylindrical pipe in concentric rings the radial spacing can be made equal to the circumferential spacing (Figure 2). This is not exactly equal linear spacing, but near enough. A suitable randomizing function, the uniform distribution say, can be applied to each particle position to avoid a rigid grid pattern. This discussion is not about rigid geometry.

The innermost ring at radius r0 (= δr) has circumference 2πr0 . The number of particles in this ring is round(2π) , 6 particles. With 1 particle in the centre, the first ring reverts to the exact 7-particle pattern. Subsequent rings at equal steps have radii 2r0 , 3r0 …. mr0. These add to the total particle number for the section, N, as follows. 

[image: image2]
Fig.2: Equal radial and circumferential spacing
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(1)
The bracketed quantity in (1) is the summation of an arithmetic series, so
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(2)
Recasting (2) as a quadratic equation in m, solving for the number of rings and rounding to an integer, gives
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(3)
Inserting the rounded value of m back into (2) may give a slightly reduced or increased value for the total number of particles, N. A table of 60 preferred numbers N which (after rounding) fit into a circle with minimal modification can be used (Table 1). If a specific number is required, the discrepancy can be corrected by adjusting the numbers of particles in the outer rings where the effect of the change will be the smallest.

	Table 1

Preferred particle numbers (equal radial and circumferential spacing)



	3
	7
	20
	38
	64
	95
	133
	177
	227
	283

	346
	415
	491
	572
	660
	755
	855
	962
	1075
	1195

	1320
	1452
	1590
	1735
	1886
	2043
	2206
	2376
	2552
	2734

	2922
	3117
	3318
	3526
	3739
	3959
	4185
	4418
	4657
	4902

	5153
	5411
	5674
	5945
	6221
	6504
	6793
	7088
	7390
	7698

	8012
	8332
	8659
	8992
	9331
	9677
	10029
	10387
	10751
	11122


N.B. multiply by [image: image10.png]


to convert to concentration by volume (see Appendix)
This should be the end of the story, but an unfortunate consequence of making radial divisions equal and constant is that the areal density of particles constrained by cylindrical pipe walls might not be constant across the section. In fact the density by number can be approximately doubled in the central region if constraint from the pipe bore is taken into consideration, as shown below.

3.1 DENSITY OF PARTICLES BY NUMBER

In an unconstrained reservoir, the areal density (i.e. the number of particles per unit area) might be calculated for each ring i by considering the area between a superior annulus of radius (i+0.5)δr and an inferior annulus of radius (i-0.5)δr. The ring i, radius iδr has circumference 2πiδr, so 2πi particles are included over an annulus of area [image: image12.png]z[G + 0.5)367% - (i — 0.5)%*6r%]



. Hence the number density by area, ρ, is given by
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(4a)
So, given constant particle spacing in an unconstrained reservoir, the density would be constant across all rings. However, a pipe is not an unconstrained space. Particles in the outermost ring do not have a superior annulus. Also, the normal reaction from the wall will have a centralising effect on the outermost ring of particles, especially those which come into contact with the wall. It is assumed that particles initially forming this ring will contribute to the density of the contained annulus between this ring and the inferior ring. It is further assumed that this effect at the outer annulus will cause the next ring of particles to add to its inferior concentric annulus, continuing to ring 2 which shrouds the space to the seven-particle pattern at the centre. Re-calculating the particle density for this case, ring i still has circumference 2πiδr, and 2πi particles are included over an annulus of area [image: image16.png]z[@67)* - (G — 1)36r3%]



, so 
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(4b)
· For annuli away from the centre (i>>1) particle density approaches 1/δ2, the unconstrained value. This is effectively independent of displacement from the centre.

· For the central region (i=1), the particle density is, approximately twice the value for peripheral annuli, regardless of the number of particles or their size. This is counter-intuitive: constraint from the pipe walls would appear to create an increase in areal density at the centre.

Constant density is often assumed across a section of flow constrained by circular pipe walls. Constant radial spacing (or randomized spacing using a uniform distribution) does not deliver this assumption when the constraint from the pipe walls is taken into account. To achieve constant density, radial spacing must be greater towards the centre of the bore while maintaining the equality between radial and circumferential spacing for each annulus. The relationship between spacing and radial displacement to maintain constant density is examined in the next section. For this purpose the spacings are now labeled with the ring number to which they apply (δri).

4. CONSTANT MIXTURE DENSITY MODEL

For a circle radius R, the overall mean area per particle, , is given by
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(5)
Initially, each annulus, [ri-1 , ri-1+ri], contains open space save those particles included in its outer ring. Since the objective of this model is constant mixture density, the number of particles in this ring, ni, can be deduced from the area of the annulus Ai, and the factor  as follows
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(6)
The equality of radial and circumferential spacing must be maintained, so the equations can be closed to derive the ring spacing, ri, in terms of the previous ring radius ri-1 . This yields a recurrence equation stepping from the innermost ring as follows. 
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i.e.
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(7)
Direct solution methods for cubic equations, such as (7), have a fascinating history (see for example http:Wikipedia). The equations can also be solved iteratively using the Newton-Raphson method. Progressing from the innermost ring (i=1), the factors in square brackets in equation (7) are constant, so each new ring can be defined by its solution for ri. This recurrence process can continue to the outer periphery of the circle, but a starting value for ri-1 is required when i = 2. This is the radius of the innermost circle, r1 (0+r1) : 6 particles in a ring plus 1 at the centre, 7 in all. The value of this radius can be obtained by equating its density to the overall mean value, i.e.
[image: image28.emf] , from which
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(8)
There is no guarantee that the outer radius achieved as a summation of increments ri will fit closely into a circle of given radius R. For very small concentrations with few rings, adjustments and/or scaling must be applied (see Jones 2013).

3. COMPARISON OF THE MODELS

The models can be compared for particle numbers which can be chosen from Table 1, say N=660 and 3318. These are approximate volumetric concentrations of 4.4% and 22.2% for 1mm particles in a 100mm bore pipe (see Appendix). Figures 3 and 4 illustrate these two examples.
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	(a) Constant Radial and Circumferential Spacing
	(b) Constant Mixture Density


Fig.3: Comparison of Particle Spacing Models for 3318 particles
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	(a) Constant Radial and Circumferential Spacing:
	(b) Constant Mixture Density


Fig.4: Comparison of Particle Spacing Models for 650 particles

4. DISCUSSION AND CONCLUSIONS
Clearly, differences between the models are most pronounced near the centre. In the example, areal density given by the Constant Radial and Circumferential Spacing Model at the centre is approximately twice that given by the Constant Mixture Density Model. This suggests that uniform particle density, , in a pipe implies larger linear distances between particles at the centre. The result appears to be a direct consequence of constraining flow into a pipe of circular section.

The two solutions to the problem of distributing particles into a circular cross-section mirror examples beyond fluid mechanics: town centres and skating ponds to name but two. Where there is no competition for space and an undefined boundary, the first model is adequate. Where competition for space is caused by a fixed boundary the increased density, and consequent pressure, will cause an outward movement. All examples occur as the result of the geometry of the constraining boundary. 
In laminar flow conditions, the first model (Constant Radial and Circumferential Spacing) should be sustainable since fluid particles should not cross a streamline. However, increased density at the centre of the pipe would create an outward pressure. At turbulent transition the streamline constraint is removed and the second model (Constant Mixture Density) would appear to be more realistic. Pressure would be available to move particles to the new pattern. 
Many assumptions about turbulent flow are based on Prandtl’s mixing length theory. It is intriguing to suggest that these results imply differences between turbulent mixing and viscosity at the centre and the periphery of a pipe bore. 
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APPENDIX
CONVERSION OF AREAL DENSITY BY NUMBER TO CONCENTRATION BY VOLUME

Firstly it is established that the area expectation in a stream of spherical particles is 2/3 of the maximum cross-sectional area of the particle. This yields a conversion from particle density by number to concentration by area. Secondly, numerical equivalence of volume concentration and particle concentration by area is confirmed for steady state. The latter assumption relies on the absence of upstream or downstream density fluctuations (see Talmon A.M., 1999).
A.1. AREAL DENSITY BY NUMBER TO PARTICLE DENSITY BY AREA

Imagine a particle diameter d flowing through the pipe cross-section. Let x be the position at which the particle penetrates the plane. The diameter of the circle cut by the cross-section, ds , is 
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    (A1)
Hence the area of a slice through a typical spherical particle, As , is given by
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    (A2)
Any intersection distance, x, can be considered equally likely on [0,d], so for multiple particles, the expectation E(As) can be written
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(A3)
From equation (A3), the probabalistic areal concentration, CA, for N particles on a cross-section diameter D is given by
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(A4)
A.2. PARTICLE DENSITY BY AREA TO PARTICLE CONCENTRATION BY VOLUME


 Assuming that horizontal slices, through pipe length L, have the same areal density as in the cross-section, the total particle volume, Vp, is 
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(A5)
But the total particle volume can also be given in terms of the concentration by volume, as follows.
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         (A6)
Comparing (A5) and (A6), it can be concluded that concentration by volume, C , in a length of pipe is identical to concentration by area in an arbitrarily chosen cross-section within that length.
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